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Abstract. The light weakly bound nucleus 7Li is studied within a dicluster α+ t picture. Different observ-
ables obtained within our simple model are compared with previous calculations and experiments showing
good agreement. In particular, we calculate dipole and quadrupole electromagnetic response to the contin-
uum. The energy distribution of B(Eλ) values are consistent with the energy-weighted molecular sum rule
and display a sizable contribution of non-resonant character arising from the weak binding property. The
corresponding form factors for excitations to the continuum are used in a semiclassical coupled-channel
scheme to get estimates for the breakup cross-section in a heavy-ion reaction. The nuclear contribution is
found to play an important role in the process for bombarding energies around the Coulomb barrier. The
masses and charges ratios of the two clusters are shown to lead to features of the cluster halo that may
significantly differ from the one usually associated with one-nucleon haloes.

PACS. 21.60.Gx Cluster models – 24.10.Eq Coupled-channel and distorted-wave models – 25.60.Gc
Breakup and momentum distributions

1 Introduction

A distinctive feature of nuclear systems along the neutron
drip line is the concentration of multipole strength at ex-
citation energies just above the continuum threshold. This
concentration of strength (mainly of dipole or quadrupole
nature) is directly measured in breakup reactions, but it
has strong dynamical effects also on other processes, such
as elastic scattering or sub-barrier fusion reactions. It has
been proved that this peculiar feature is associated with
the weakly bound nature of most nuclei at the drip line
([1–5]). Within a dicluster description of a weakly bound
nucleus (where in the simplest case one of the clusters may
be a single nucleon) the quantum state that describes the
system lies very close to the threshold for separation into
the two subsystems. The wave function for the relative
motion associated with such a state (and hence its dis-
tribution of matter) extends to large radii, spreading far
outside the walls of the intercluster potential well (this is
valid already at the level of a square well potential, and it
is even more evident for a realistic potential with a diffused
surface). This establishes the opportunity to set a match-
ing between the bound wave function and some scattering
state in the (low-lying) continuum whose typical wave-
length roughly corresponds to the spatial extension of the
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bound state wave function. As a consequence, the resulting
electromagnetic response shows a marked concentration of
strength in the threshold region at an excitation energy di-
rectly correlated to the binding energy. With the specific
scaling that depends on the angular momentum of the ini-
tial state, as well as on the neutron or proton character
of the halo state, the energy corresponding to the maxi-
mum of the strength distribution follows approximately a
linear behaviour on the binding energy [6], while the total
dipole strength at the threshold depends approximatively
on the inverse of the binding energy and tends therefore
to magnify its effects as one approaches the drip lines.

The picture outlined above finds its simplest applica-
tion in the case of single particle haloes [7,1], where, in a
mean-field approach, it is the last unpaired nucleon that
is responsible for the halo distribution, but it can be ex-
tended to the case of light weakly bound dicluster nuclei
to describe excitations to continuum states that lead to
cluster breakup. A number of experiments have been pur-
sued in recent years, for instance, on the study of breakup
of Li isotopes [8–11]. We will take as a paradigmatic ex-
ample the case of the nucleus 7Li, whose ground state is
well described in terms of interacting α and triton clus-
ters, which characterize the lowest continuum threshold
(at 2.467 MeV). The basic necessary assumption is that
the excited states, both bound and unbound, are also de-
scribed within the same dicluster picture, assuming the
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two clusters to be frozen. The excitation process is there-
fore reduced to a transition in the wave function describing
the cluster-cluster relative motion.

This simple model for the threshold strength is mod-
ified when the system displays, in the low-energy con-
tinuum, true resonant states in addition to the non-
resonant part. This is, for example, precisely the case of
7Li which has the 7/2− and 5/2− states at 4.652 MeV
and 6.604 MeV, respectively. Within the cluster picture
these states correspond to narrow resonances in the rela-
tive motion with angular momentum ` = 3. Ad hoc for-
malisms, which only include either the resonances or the
non-resonant continuum, may therefore be inadequate to
describe the full process. In a proper treatment of the re-
sponse to the continuum both resonant and non-resonant
contributions arise in a natural way and may have com-
parable strengths. As an example of such an approach we
recall the recent work of Kelly and collaborators [8], who
analyzed experimental data within a CDCC approach [12],
in which the continuum is discretized. The binning of the
continuum is however not optimal due to computational
limitations, a problem that as we will see, is not present
in our model. CDCC calculations usually consider only a
few energy bins in the relevant low-energy region, while
our approach can easily accommodate for thousands of
bins in the same energy range. Other CDCC calculations
for 7Li breakup are found in ref. [13].

In our calculation, the form factors for excitations
to the continuum have been used in a semiclassical
coupled-channel scheme to get estimates for the breakup
cross-section. As an example, we have chosen the spe-
cific reaction 7Li + 165Ho for which subbarrier fusion
data are available and for which estimates of breakup
probabilities are important for the interpretation of the
data [14]. Since there are indications that the nuclear field
plays a non-negligible role [15], both Coulomb and nu-
clear contributions are included and their relative impor-
tance is analyzed. The non-resonant contribution to the
cross-section is found to provide a sizable fraction of the
total cross-section. Due to the strong nuclear component,
the quadrupole breakup process is predicted to dominate
over the dipole. Since optical parameters for holmium are
not available, we have also tested our model against other
calculations [8] for the reaction 7Li + 208Pb, finding good
agreement.

2 Dicluster description of 7Li

Walliser and Fliessbach [16] discuss a cluster picture for
7Li, in which the constituents of the nucleus (the α and t
particles) are treated as elementary, that is without inter-
nal structure, but not necessarily point-like. They obtain
considerable agreement with experimental data and we
conform, in principle, to their model. The main difference
is the choice of the potential to be used to determine the
relative motion of the cluster. In similarity with the usual
single-particle case, our effective α-t potential

Vα-t(r) = Vcoul(r) + VWS(r) + Vl·s(r) (2.1)

Table 1. Comparison of calculated and experimental quan-
tities. The second column shows our results, while the third
are various experimental data. The last contains calculations
performed by other authors. The apices in square brackets in-
dicate the references.

Quantity This
work

Experiments Other
works

〈r2〉
1/2
ch (fm) 2.44 2.55(0.07)[16] 2.43[16,21]

2.39(0.03)[16] 2.55[22]

Qel (fm
2) −3.77 −3.8(1.1)[16]

−3.4(0.6)[16]

−3.70(0.08)[16]

Qmat (fm
2) −3.99 −4.1(0.6)[16] −3.82[10]

−4.00(0.06)[16] −3.83[10]

−4.41[10]

B(E2, 3
2

−

→ 1
2

−

) 7.55 8.3(0.6)[16] 7.74[10]

(e2fm4) 8.3(0.5)[16] 7.75[10]

7.59(0.12)[19] 10.57[21]

7.27(0.12)[19]

B(M1, 3
2

−

→ 1
2

−

) 2.45 2.50(0.12)[16]

(µ2)

Γ ( 7
2

−

) (keV) ∼ 110 93(8)[20]

Γ ( 5
2

−

) (keV) ∼ 930 875+200
−100

contains, besides the Coulomb repulsion (corrected at
small distances for the sphericity of charge distribu-
tions), the nuclear attractive potential (assumed of sim-
ple Woods-Saxon form) and the spin-orbit term [17]. The
depth of the Woods-Saxon well (VWS = −74.923MeV)
and the magnitude of the spin-orbit correction (Vls =
1.934MeV) have been adjusted to reproduce the energy
eigenvalues for the two bound states. The α cluster has
spin 0 while the t cluster has spin 1

2
. The angular momen-

tum coupling between the ` = 1 relative motion and the
spin of the triton provides the total angular momenta ( 3

2
)−

for the ground states with energy −2.467MeV and ( 1
2
)−

for the first excited state at −1.989MeV [18]. (Energies
are measured with respect to the α-t breakup threshold.)
The resulting wave functions for the ground state and for
the first excited state are in a qualitative agreement with
the ones obtained in the paper of Wallisser and Fliessbach
(for example, the radial node occurs at the same point).

In spite of its simplicity, this model for 7Li is nev-
ertheless capable of a good agreement with experimental
observations, as witnessed by the list of observables in ta-
ble 1 [16,19–22]. Evaluation of charge radius, electric and
matter quadrupole moments, B(E2) and B(M1) values
for transitions between the ground state and the first-
excited state are reported. These quantities, except the
two width, are calculated according to the prescriptions
given in ref. [16]. These observables are very sensitive to
the particular shape of the wave functions and therefore
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provide a reliability test for our approach as far as bound
states are concerned. In the same table we also compare
our findings with previous calculations. The last two rows
in the table refer to the widths of the two f7/2 and f5/2
resonances which are given with the purpose to show that
this model gives also sensible predictions for the contin-
uum states.

3 Electromagnetic response

We now apply the dicluster picture to the calculation of
electromagnetic response for the transitions to continuum
states. In this scheme all the features of the transition are
ascribed to the modification of the wave functions describ-
ing the relative motion. The clusters are in fact assumed
to be frozen in this picture, and their intrinsic wave func-
tions are not modified by the electromagnetic operators.
The multipole operator may be written as a sum of oper-
ators that act on different degrees of freedom. Since there
is no rearrangement of the intrinsic structure of the two
clusters, the corresponding parts will not contribute to
the B(Eλ). The strength distribution for the transition
from an initial state of the intrinsic motion with wave
function ψnili(r) and quantum numbers ni, li, ji to a dif-
ferent final state (either bound or unbound) with wave
function ψnf lf (r) and quantum numbers nf , lf , jf may be
written as

B(Eλ) =
ĵf

2
l̂f

2
l̂i

2
λ̂2

4π
e2λ

(

lf
0

λ

0

li
0

)2{

lf
ji

jf
li

jcl
λ

}2

·
(

∫

∞

0

ψnf lf (r)r
λ+2ψnili(r)dr

)2

, (3.1)

where ĵ = (2j + 1)1/2 and the effective charge is defined
as eλ = Zcl(Aco/A)

λ+Zco(−Acl/A)λ and the subscripts
cl and co refer to the cluster (the one with a nonzero
intrinsic angular momentum) and the core (the one with
a null intrinsic angular momentum). When the final state
is in the continuum, its wave function also depends on EC .

Starting from the ground state (with p character)
we have investigated electric dipole transitions to s and
d states as well as quadrupole transitions to p and f
states. The corresponding differential transition probabil-
ities are shown in figs. 1. In the former case, the scat-
tering states for even multipolarities have been calculated
with the same potential that has been used to generate
the bound states. In the latter case, the same parame-
ters have been used for the p-wave continuum, while for
the f -wave modified Woods-Saxon (VWS = −68.255) and
spin-orbit (Vls = 3.115) potentials have been used to yield
the 7/2− and 5/2− resonant states in the excitation spec-
trum at the correct energy. With this choice the widths of
these two states have been found in reasonable agreement
with experimental observations as shown in the last part
of table 1, without the need for further adjustments. Be-
sides this resonant strength we observed a concentration
of strength of non-resonant character at the separation
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Fig. 1. Upper panel: differential B(E1) values (in
e2 fm2/MeV) for transitions from the ground state to the con-
tinuum. Energies are in MeV, the different contributions are
indicated in the legend. Lower panel: differential B(E2) val-
ues (in e2 fm4/MeV) for transitions from the ground state to
the continuum and to the first-excited bound state, displayed
in the figure as a discrete bar (the transition strength is in-
dicated). Energies are in MeV, referred to the threshold for
breakup into the α-t channel.

threshold, solely due to the weakly bound nature of the
7Li nucleus. This strength is small for multipolarities that
have a resonance in the low-lying continuum, but it is siz-
able when there are no resonances (as in the p cases).

We have compared our calculated values with the pre-
dictions of the energy-weighted sum rules as well as of
the energy-weighted molecular sum rules (EWMSR) [23,
24], also called AGB sum rule, that are particularly use-
ful for molecular-like structures. In light nuclei enhanced
E1 transitions have been observed for which B(E1) values
may still be very small in comparison with single-particle
estimates. EWMSR have been introduced as a measure for
these transitions and in the cases of dipole and quadrupole
they read

SI(E1, A1 +A2) =

(

9

4π

)

(Z1A2 − Z2A1)
2

AA1A2

(

~
2e2

2m

)

(3.2)
and

SI(E2, A1 +A2) =
(

25

2π

)

1

Z

(

Z1Z2 +
(

Z1

A2

A
− Z2

A1

A

)2
)

S2
0

(

~
2e2

2m

)

,

(3.3)

under the assumption that the nucleus with mass A and
charge Z is split into two clusters with masses A1 and
A2, charges Z1 and Z2 and neutron numbers N1 and N2.
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The distance S0 is the equilibrium separation that may be
simply calculated as the sum of the radii of the two clus-
ters (we have taken S0 = 3.63 fm). We find that the low-
lying dipole strength exhausts approximatively the 2.6%
of the Thomas-Reiche-Kuhn sum rule, but it amounts to
about 94% of the energy-weighted molecular dipole sum
rule. Similarly, the quadrupole strength is the 9.2% of the
energy-weighted quadrupole sum rule and about 42% of
the EWMSR. For a proper comparison with the sum rule,
we have included in the calculation of the exhausted frac-
tion of sum rules, besides the transition to the continuum
and the quadrupole transition to the first-excited state, all
the possible transitions to lower unphysical bound states
(1s1/2, 2s1/2, 1d5/2, 1d3/2 for dipole and 1p3/2, 1p1/2 for
quadrupole). Note that the dipole transitions to unphys-
ical states give a negative contribution of about 50% to
the total energy-weighted strength.

4 Formalism and form factors

We move now from the pure electromagnetic response to
the study of the breakup reaction in which the dicluster
7Li nucleus is used as a projectile on a heavy target.

The coordinate system for the interaction between a
dicluster nucleus and a target is depicted in fig. 2. The
factors f1 and f2 are the ratios of the distances of the
center of mass of each cluster from the common center
of mass divided by the inter-cluster distance r. We have
named the two clusters as “core” and “cluster” to avoid
confusions even if the alpha particle has not a mass large
enough to justify the choice with respect to the triton.

Within the cluster model, the wave function for 7Li is
the product of the wave functions of the two alpha and tri-
ton clusters (assumed to be frozen during the transition)
and of the wave function describing the relative cluster-
cluster motion. Assuming a value L for the relative angular
momentum, and taking into account the intrinsic j = 0
and j = 1/2 spins for the alpha and the triton, the generic
state with total spin J can be expressed as | L, J,M〉.
For states in the continuum, states are also characterized
by the value EC of the energy in the continuum, namely
| L, J,M ;EC〉. The form factor associated with a process
in which the relative cluster-cluster motion undergoes a
transition to the continuum is given by

F (R, EC)LJM→L′J ′M ′;EC
=〈L′J ′M ′;EC |V (R, r) |LJM〉

(4.1)
in terms of the relative projectile-target coordinateR. The
relevant interaction is assumed as the sum of the interac-
tions of the target, labeled with T , with each cluster,

V (R, r) = Vα−T (| R− f2r |) + Vt−T (| R+ f1r |) , (4.2)

where each interaction consists in a nuclear and a Coulomb
part, the former being assumed to be of a Woods-Saxon
form. Since the clusters are frozen during the transition
the integration over the internal degrees of freedom is
straightforward and one is left with an integration over

Target

Core

Cluster

CM
R

f1r

−f2r

R + f1r

R− f2r

Fig. 2. Coordinate system for the interaction between a di-
cluster nucleus (white) and an external target (black).

the cluster-cluster coordinate r in the form

F (R, EC)LJM→L′J ′M ′;EC
=
√
πĴĴ ′L̂L̂′

×
∑
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(−1)3jcl−M
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λ

0

){
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L′
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jcl

}

×
[

∫

∞

0

r2dr

∫ 1

−1

duψL(r)ψL′,EC
(r)
(

Vα−T (| R− f2r |)

+Vt−T (| R+ f1r |)
)

Pλ(u)

]

Yλ,µ(R̂) , (4.3)

where λ, µ are the change in orbital angular momentum
and its third component due to the transition and u is the
cosine of the angle between the two vectors R and r. As
in the previous section, ĵ = (2j + 1)1/2.

The resulting Coulomb and nuclear form factors for
the 7Li + 165Ho reaction are plotted in fig. 3 for a dipole
transition between the p3/2 ground state and the s1/2
state at EC = 1MeV in the continuum. It is evident that
the nuclear field dominates at smaller distances, while the
Coulomb one dominates at larger distances. This is once
again displayed in the next three figures where three dif-
ferent distances have been kept constant and the Q-value
dependence upon EC is illustrated. The nuclear contri-
bution is still very important at a distance of 12–14 fm
that is far beyond the geometrical sum of the radii of the
two systems. This effect may even be magnified in halo
systems closer to the drip lines, where the weakly bound
wave functions are even more extended. Figures of qual-
itatively similar behaviour are obtained for all the other
possible transitions.

To better understand the relative role of dipole and
quadrupole interactions, we show separately in fig. 4 the
form factors for selected dipole and quadrupole transi-
tions. Together with the total form factor, we report the
contribution arising from the interaction between each of
the two clusters and the target separately. In the case
of a dipole transition a cancellation occurs between the
two contributions, while for the quadrupole case the two
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distances (right panel). Coulomb (dotted) and nuclear (dashed) form factors are shown. See text for details.
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clusters contribute constructively to the excitation. The
effect is here amplified by the fact that the two clusters
have similar sizes. In the limit of two equal clusters, the
nuclear contribution to dipole transitions would exactly
vanish. Similarly, no Coulomb dipole transitions are al-
lowed if the two clusters have equal mass-to-charge ratios.

5 Cross-section

The form factors obtained in the last section contain all
the relevant elements to build up breakup cross-sections
and Q-value distributions in a simple, although accurate

procedure. The reaction amplitudes can be calculated in
a semiclassical coupled-channel approach. The energy in
the continuum is divided in a suitable number of inter-
vals, treated as different channels. For each energy inter-
val (and each spin), the form factor connecting with the
ground state is obtained (assuming the central value of the
energy interval) as described in the previous section. To
keep simple the calculations continuum-continuum cou-
plings have not been included, although in some cases
they were found to play a relevant role (see, for example,
ref. [25]). We follow in time the solutions of the system of
coupled equations for the amplitudes in the different chan-
nels, along a trajectory that is calculated semiclassically
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resonance is marked, while the 5/2− around 4 MeV is very small. Right panels: differential (Coulomb, nuclear and total) breakup
cross-sections as a function of the impact parameter with the same data of the left figures. Again different multipolarities are
shown separately and one may notice the different behaviour at large impact parameter, that is dominated by the dipole
contribution.

using a standard Akyuz-Winther parameterization [26] for
the target-projectile potential. The values of the ampli-
tudes at the end of the scattering process are then used to
calculate cross-sections for the excitation of a given chan-
nel and differential cross-sections as a function of the en-
ergy in the continuum. The simplicity of the scheme allows
us to use a rather small energy mesh, without any conver-
gence problem as the mesh is reduced. This is particularly
important when one has to deal with a continuum that
includes, as in our case, narrow resonances. Details on the
formalism may be found in ref. [2]. The resulting cross-
sections are collected in fig. 5. The Q-value distribution
obtained for Coulomb breakup is displayed in left-upper
panel (the contributions of the dipole and quadrupole
transitions are separately shown, together with their sum).
It is worthwhile noticing that the two low-lying peaks arise
from different mechanisms: the peak at around 0.5MeV is
mostly built up with transitions to the continuum which
are enhanced due to the weak-binding nature of the pro-
jectile, while the peak at 2.186 MeV has a true resonant
nature (7/2−). In the case of quadrupole transition the
non-resonant strength can be less easily seen just above
the threshold, since the different radial dependence of the
form factor makes its relative magnitude small compared
to the dipole one, in spite of a larger value of the B(Eλ)’s
distribution. Differential cross-sections with respect to im-
pact parameter are also shown in the right column of

fig. 5. At low impact parameters the excitation process
is strongly quenched by the transmission factor. For large
values one can see the different behaviour of the two tails:
the quadrupole contribution decays faster than the dipole.
Consequently, at large impact parameters, that, in a clas-
sical picture, correspond to forward angles, the Coulomb
breakup cross-sections are mostly due to dipole transitions
to the continuum. The total Coulomb cross-section (res-
onant and non-resonant) at Ecm = 40MeV amounts to
∼ 4.85 mb, with comparable dipole and quadrupole con-
tributions (∼ 3.0 mb for the dipole and ∼ 1.85 mb for the
quadrupole).

To evaluate the effect of the nuclear interaction we
need to specify the precise set of optical parameters be-
tween each of the two clusters and the target nucleus.
We have looked up for optical parameters in the standard
tables [27,28], where data sets for elastic scattering on
holmium are missing, and, in absence of any alternative,
we have used parameters extracted for cerium, which is the
closest isotope. We used only the real part of the potentials
in the construction of the form factors. Of course we do
not expect these parameters to represent a strictly valid
quantitative choice, but we have used them in order to give
estimates of the nuclear and total breakup cross-sections
that are reported in the following. The nuclear breakup
has a Q-value distribution (depicted in fig. 5, second row
of the left column) with an overall profile that resembles
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Table 2. Cross-sections for the breakup of 7Li into α + t
cluster states in the 7Li + 208Pb reaction at E = 48MeV.
The contributions arising from final states with given angular
momentum (L′) are separately listed.

σ( 7Li→ α+ t) (mb)

L′(~) Ref. [8] This work

0 26.3 22.9

1 6.0 4.4

2 – 25.3

3 15.9 6.7

Total 48.2 59.3

the Coulomb one, being the total integrated cross-section
about ∼ 24.1 mb. At variance with previous findings the
dipole contribution to this cross-section (∼ 1.3 mb) is now
much smaller that the quadrupole one (∼ 22.8 mb). This
is again originated by the comparable size of the clusters,
that hinders dipole components, while the predominant
nuclear quadrupole term is not quenched by the faster ra-
dial dependence of the form factor as in the case of the
Coulomb term. In this case, therefore, both resonant and
non-resonant peaks are of predominant quadrupole na-
ture.

The final Q-value distribution and the corresponding
curve as a function of the impact parameter, both taking
into account the interference between the two fields, are
depicted in the last row of fig. 5. The total cross-section
amounts to about ∼ 29.0 mb. The dipole transition con-
tributes for ∼ 6.9 mb, while the quadrupole is about
∼ 22.1 mb. It should be noticed that, while the Coulomb
contribution is rather insensitive to the absorption ra-
dius, a significant change in the nuclear cross-section (and
therefore in the total one) may occur as long as the radius
of the nuclear interaction is varied, as as one can easily
infer, for example, from the last panel. For a discussion
on the subject, see for example ref. [2].

In order to test our model and to compare with
other available models we have performed calculations
of breakup cross-sections for 7Li on 208Pb at 48 MeV
bombarding energy. Our calculations may be directly con-
fronted with the work of Kelly and collaborators [8], that
are essentially based on the same physical ingredients. We
report both theirs and our results in table 2. Standing the
differences in the values of the couplings (we extracted
208Pb-α and 208Pb-t optical parameters from the work
of Gupta et al. [29]) and in the treatment of the con-
tinuum (we take into account continuum energy up to
10 MeV), the agreement among the various contributions
to the cross-sections from λ = 0, 1 and 3 states is satis-
factory, although some discrepancy is seen in the λ = 3
continuum. In addition, we provide calculations for the
contribution arising from d states, that is found to be a
very important component of the total cross-section. This
is at variance with respect to the cited analysis by Kelly et

al., where the quadrupole component is considered to be
negligible. The numerical results in table 2 have been ob-

tained considering dipole and quadrupole transitions only,
but we have checked that octupole transitions to d states
and hexadecupole transitions to f states may be neglected
(being around 10−3mb and 0.9 mb, respectively).

6 Conclusions

We have illustrated a general model to describe excita-
tions to continuum states in weakly bound dicluster nu-
clei, leading to cluster dissociation. In the model the in-
ternal degrees of freedom of the clusters are kept frozen
in the excitations, which are therefore entirely ascribed
to the relative cluster-cluster motion. Both resonant and
non-resonant continuum states are simultaneously prop-
erly included. In the case of weakly bound nuclei the non-
resonant part shows the presence of multipole strength at
the threshold that is a typical feature for single-particle
excitations in one-particle halo nuclei.

Paralleling the formalism previously developed for the
breakup of one-particle halo nuclei, form factors for tran-
sitions to cluster continuum states are constructed and
cross-sections for cluster breakup reactions are calculated
in a semiclassical coupled-channel description. The inter-
play of dissociation via resonant states or via non-resonant
continuum is discussed. The form factors are studied in
detail: we illustrate their behaviour as a function of the
relative distance of the two colliding nuclei, as a function
of the energy of the continuum states and we discuss the
effects of cancellation and reinforcement, for dipole and
quadrupole transitions, respectively, that is a consequence
of the relative masses and charges of the two clusters.

Q-value distributions and differential breakup cross-
sections with respect to impact parameters, as well as
the total breakup cross-sections, are evaluated for the
reaction 7Li + 165Ho, taking into account both nuclear
and Coulomb contributions, although restricted to diclus-
ter nuclei. This simple approach to the breakup prob-
lem avoids possible problems arising from a crude energy
binning of the continuum. Our results show that, in the
case of a system described in terms of two clusters of
similar size and charge (as is the case of 7Li), the main
contribution to breakup processes come from the nuclear
quadrupole mechanism.

The authors acknowledge fruitful discussions with K. Hagino
and C.H. Dasso.
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